4,239 research outputs found

    Analytical Model of Proportional Fair Scheduling in Interference-limited OFDMA/LTE Networks

    Full text link
    Various system tasks like interference coordination, handover decisions, admission control etc. in upcoming cellular networks require precise mid-term (spanning over a few seconds) performance models. Due to channel-dependent scheduling at the base station, these performance models are not simple to obtain. Furthermore, upcoming cellular systems will be interference-limited, hence, the way interference is modeled is crucial for the accuracy. In this paper we present an analytical model for the SINR distribution of the \textit{scheduled} subcarriers of an OFDMA system with proportional fair scheduling. The model takes the precise SINR distribution into account. We furthermore refine our model with respect to uniform modulation and coding, as applied in LTE networks. The derived models are validated by means of simulations. In additon, we show that our models are approximate estimators for the performance of rate-based proportional fair scheduling, while they outperform some simpler prediction models from related work significantly.Comment: 7 pages, 6 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Light-Cone Quantization of the c=2 Matrix Model

    Full text link
    We study the large NN limit of an interacting \td\ matrix field theory, whose perturbative expansion generates the sum over planar random graphs embedded in two dimensions. In the \lc\ quantization the theory possesses closed string excitations which become free as N→∞N\to\infty. If the longitudinal momenta are discretized, then the calculation of the free string spectrum reduces to finite matrix diagonalization, the size of the matrix growing as the cut-off is removed. Our numerical results suggest that, for a critical coupling, the \lc\ string spectrum becomes continuous. This would indicate the massless dynamics of the Liouville mode of \td\ gravity, which would constitute a {\it third} dimension of the string theory.Comment: 12 pages, (3 diagrams now available as postscript files from authors, 1 ref added), PUPT-133

    Speech rhythms and multiplexed oscillatory sensory coding in the human brain

    Get PDF
    Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations

    Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition

    Full text link
    There are numerous advantages to exploiting diffraction-limited instrumentation at astronomical observatories, which include smaller footprints, less mechanical and thermal instabilities and high levels of performance. To realize such instrumentation it is imperative to convert the atmospheric seeing-limited signal that is captured by the telescope into a diffraction-limited signal. This process can be achieved photonically by using a mode reformatting device known as a photonic lantern that performs a multimode to single-mode transition. With the aim of developing an optimized integrated photonic lantern, we undertook a systematic parameter scan of devices fabricated by the femtosecond laser direct-write technique. The devices were designed for operation around 1.55 {\mu}m. The devices showed (coupling and transition) losses of less than 5% for F/# ≥\geq 12 injection and the total device throughput (including substrate absorption) as high as 75-80%. Such devices show great promise for future use in astronomy.Comment: 12 pages, 9 figure

    The Kosterlitz-Thouless Phenomenon on a Fluid Random Surface

    Full text link
    The problem of a periodic scalar field on a two-dimensional dynamical random lattice is studied with the inclusion of vortices in the action. Using a random matrix formulation, in the continuum limit for genus zero surfaces the partition function is found exactly, as a function of the chemical potential for vortices of unit winding number, at a specific radius in the plasma phase. This solution is used to describe the Kosterlitz- Thouless phenomenon in the presence of 2D quantum gravity as one passes from the ultra-violet to the infra-red.Comment: 15 pages. This version to appear in Nucl.Phys.B contains less introductory material (revised

    The XY Model on a Dynamical Random Lattice

    Get PDF
    We study the XY model on a lattice with fluctuating connectivity. The expectation is that at an appropriate critical point such a system corresponds to a compactified boson coupled to 2d quantum gravity. Our simulations focus, in particular, on the important topological features of the system. The results lend strong support to the two phase structure predicted on the basis of analytical calculations. A careful finite size scaling analysis yields estimates for the critical exponents in the low temperature phase.Comment: 19 pages 11 figures, ILL-(TH)-93-

    Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds

    Full text link
    Accurate detection of 3D objects is a fundamental problem in computer vision and has an enormous impact on autonomous cars, augmented/virtual reality and many applications in robotics. In this work we present a novel fusion of neural network based state-of-the-art 3D detector and visual semantic segmentation in the context of autonomous driving. Additionally, we introduce Scale-Rotation-Translation score (SRTs), a fast and highly parameterizable evaluation metric for comparison of object detections, which speeds up our inference time up to 20\% and halves training time. On top, we apply state-of-the-art online multi target feature tracking on the object measurements to further increase accuracy and robustness utilizing temporal information. Our experiments on KITTI show that we achieve same results as state-of-the-art in all related categories, while maintaining the performance and accuracy trade-off and still run in real-time. Furthermore, our model is the first one that fuses visual semantic with 3D object detection

    Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings

    Full text link
    The first demonstration of narrowband spectral filtering of multimode light on a 3D integrated photonic chip using photonic lanterns and waveguide Bragg gratings is reported. The photonic lanterns with multi-notch waveguide Bragg gratings were fabricated using the femtosecond direct-write technique in boro-aluminosilicate glass (Corning, Eagle 2000). Transmission dips of up to 5 dB were measured in both photonic lanterns and reference single-mode waveguides with 10.4-mm-long gratings. The result demonstrates efficient and symmetrical performance of each of the gratings in the photonic lantern. Such devices will be beneficial to space-division multiplexed communication systems as well as for units for astronomical instrumentation for suppression of the atmospheric telluric emission from OH lines.Comment: 5 pages, 4 figures, accepted to Laser & Photonics Review

    Summability of Superstring Theory

    Get PDF
    Several arguments are given for the summability of the superstring perturbation series. Whereas the Schottky group coordinatization of moduli space may be used to provide refined estimates of large-order bosonic string amplitudes, the super-Schottky group variables define a measure for the supermoduli space integral which leads to upper bounds on superstring scattering amplitudes.Comment: 11 pages, TeX. A remark about C-cycles and dividing cycles and two references have been added to the pape
    • …
    corecore